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Abstract

The mutual learning process between two parity feed-forward networks with
discrete and continuous weights is studied analytically, and we find that the
number of steps required to achieve full synchronization between the two
networks in the case of discrete weights is finite. The synchronization process
is shown to be non-self-averaging and the analytical solution is based on random
auxiliary variables. The learning time of an attacker that is trying to imitate
one of the networks is examined analytically and is found to be much longer
than the synchronization time. Analytical results are found to be in agreement
with simulations.

PACS numbers: 87.18.Sn, 89.70.+c

The study of neural networks was originally driven by its potential as a powerful learning and
memory machine. Statistical mechanical methods have been used to analyse the network’s
ability and explore its limitations [1, 2]. In a recent paper [3], a bridge between the theory
of neural networks and cryptography was established. It was shown numerically that two
randomly initialized neural networks with one layer of hidden units (so-called parity machines
(PMs)[4]) learning from each other, are able to synchronize. The two parties have common
inputs and they exchange information about their output. In the case of disagreement, the
two PMs are trained by the Hebbian learning rule on their mutual outputs and they develop a
full synchronized state of their synaptic weights. This synchronization procedure can be used
to construct an ephemeral key exchange protocol for the secure transmission of secret data.
An attacker who knows the architecture of the two parties, the common inputs, and observes
the mutual exchange of information, finds it difficult to imitate the moves of the parties and
to reveal the common parameters after synchronization. All parties have secret information
which is not known either to other members or to possible attackers: their initial weights and
the current state of their hidden units are noted as internal representations (IRs).

In most applications a public-key system is used which is based on number theory where
the keys are long integers, and the complexity of the encryption/decryption processes scales
polynomially with the size of the key [5]. In this letter we present a cryptosystem which is
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based on biological ideas including the network architecture, biological operations and the
learning process, and the complexity of the generation of the secure channel is linear with
the size of the network. This biological mechanism, which is shown analytically to be robust
against a possible attack, may be used to construct an efficient encryption system using keys
which change permanently.

During the last decade, the analysis of learning from examples performed by feed-forward
multi-layered networks was exhaustively examined using statistical mechanical methods
[1, 2]. The study of the generalization ability of such networks was based on a set of
training examples generated by a static teacher network. Here we discuss a case where two or
several multilayer networks are trained by their mutual outputs. This scenario has been solved
only for perceptrons with continuous weights [6]. Here we present an analytic solution for
PMs with continuous as well as with discrete weights.

In our cryptosystem, each party in the secure channel is represented by a feed-forward
network consisting of KN random input elements x;; = +1, j = 1,..., N, K binary hidden
units 7; = £1,7i = 1,..., K and one binary output unit 0 = II;7;. For simplicity of
calculations presented below we concentrate only on the case of a tree PM with three binary
hidden units feeding a binary output o = 7,7, 73. The hidden units are determined via Boolean
functions t; = sgn(Z_i W_,-,-x_,-,-) through three disjointed sets of inputs X; = xy;, ..., xy;. The
weights are either discrete or continuous, and the analytical results are derived for N > 1.

In this letter we present: (a) an analytical solution of the mutual learning of two PMs whose
weight-vectors are updated according to the mismatch between their mutual information—their
outputs. Synchronization is achieved in the case of discrete weights, W;; =0, =1, ..., £L,
as well as for continuous weights confined to a sphere, Z;V:] lel = N. (b) Analysis of online
adaptation of discrete weights, in which each change of a component is not infinitesimally
small, demands different methods than the standard ones [7], and this is at the centre of the
discussion below. Surprisingly, synchronization is achieved for the discrete weights at a finite
number of steps. (c) Dynamical evolution of the discrete networks cannot be characterized by
the time evolution of the standard order parameters, since the overlaps between the weight-
vectors are not self-averaging [8] even for large networks. The analytical solution is based
on calculation of the evolution of the distribution of the order parameters as a function of the
initial set of the weights. (d) The analysis is extended to include a possible attacker.

For simplicity of presentation, we first describe the analytical methods developed for the
discrete case where detailed results are presented for particular examined cases. At the end of
this letter results for the continuous case are also briefly summarized.

The definition of the updating procedure between the two parties, A and B, that are trying
to synchronize their weights, is as follows. In each time step, the output of the two parties is
calculated for a common random input. Only weights belonging to the one (or three) hidden
units which are equal to their output unit are updated, in each of the two parties. The updating
is done according to the following Hebbian learning rule,

W_ﬁ+ = W;? + K(Wﬁx_,-,-aB)xjiaB@ (c*1)0(—0"c")

Wi = Wi+ K(Wixjio*)xi0"0(c"1”)0(—a"0?)
where K (y) = 1 —4;,, and § represents the Kronecker function. The purpose of the operator
K (y) is to prevent the increment (decrement) of the strength of the weights on the boundary
value L(—L).

Two important simulation results are crucial for the analytical description of the mutual
dynamics. The first observation is that the synchronization time is finite [3]. The second is that
different runs (set of random inputs) of the above dynamics, but with fixed initial conditions
for the two parties, result in different sets of IRs. As a result of these two observations, we
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realized that the variance of the overlaps between the two parties is finite and does not shrink to
zero even in the thermodynamic limit. This unusual scenario of online mutual learning is taken
into consideration in the analytical equations, by the selection of random IRs following the
freedom given by the current analytical overlaps. We find an iterative discrete set of equations
for the mutual overlaps between the parties, whose evolution depends on some random but
correlated ingredients—the current IRs, {tiA }, {riB } (see equation (1)).

In each time step, w, the mutual state of the two parties is defined by a 2L +1) x QL+ 1)

matrix, Fi (i), where i represents the hidden unit. The element f(;', of the matrix stands for
the fraction of components in the ith weight-vector which is equal to g (r) in the first(second)
party, where g, r = 0, =1, ..., L. The overlap of the weights belonging to the ith hidden
unit in the two parties, RiA’B = WiA . WiB/N, as well as their norms, Q; = W; - W; /N, are
given by the matrix elements

RM =) arfy, 0= 41, Q=) rf. @
q.r q.r q.r
These overlaps and norms fixed the probabilities of deriving the same IR via the normalized
overlap, ,oiA’B = RiA’B / v Q;“ QlB. More precisely, the probability of having different results
in the ith hidden unit of the two parties is given by the well-known generalization error for the
perceptron e",', =cos~! p;/m [1,2].
Each of the PMs consists of a tree architecture and for random inputs each of the eight
IRs appears with equal probability. The joint probability distribution of the 64 different pairs
of IRs in both parties is correlated, and can be explicitly expressed using {6;,}

The development of the elements of the matrix Fi(u) is calculated directly from
equation (1), where one has to average over the inputs x;;. We use auxiliary random variables
in order to choose one of the possible IRs following their probabilities given by {e",, } In each
step we choose two sets of random numbers which are taken from a flat distribution between
0 and 1: set I: In the event that the number is smaller than ¢; we deduce that the two hidden
units disagree, otherwise we assume an agreement. Set II: All eight IRs are equally probable
in the first party, since the architecture consists of a tree PM. We choose one among the eight
using the second set of auxiliary variables p,, and the corresponding IR for the second network
according to the first set.

To exemplify derivation of the iterative equations for { f,;,_ }, let us concentrate on the case
where the result of the first random set is that all three hidden units are in disagreement. In
two possibilities out of the eight IRs all three hidden units are updated, whereas in the other
six possibilities only one is updated (we then have to choose at random one among the three).
After taking into account all possible internal scenarios, and accordingly the updates, one can
show that the iterative equations for { ,;,_} away from the boundary, g, r # L, are given by

i+ ! 1 i : i
ar = 0 Z — Dr E g+1,r—1 + EfLI*l"H
i+1 i 1 L
+6 P 0| pr— 1 Efqﬂ,rfl + Equlﬁl :

On the boundary, similar equations can be derived as well as for other internal scenarios.
Taking into account all possible scenarios and the inversion symmetry of our PMs, one has to
solve iteratively only four classes of equations in a manner similar to the above-mentioned [9].

Different runs for updating the equations result in different trajectories of the order
parameters. In the inset of figure 1, we present the average overlap p = Z?=1 pi/3, and its
standard deviation, obtained from 500 different runs of the analytical equations with L = 1.
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Figure 1. The histogram of the fgynen (solid line) and fiearn (dashed line) as was obtained in
different runs of the discrete iterative equations for PMs with L = 1. Symbols stand for simulation
results, N = 10000 and 500 runs. Inset: numerical results of p as a function of the number of
steps. Analytical results (solid line) and simulation results (circles) include the standard deviation
obtained from 500 different runs.

Results of the averaged overlap (with similar standard deviation) obtained in 500 runs of
simulations with N = 10* are denoted by circles.

An important quantity is the number of steps required to achieve full synchronization,
Lsynch» Since it can be used by the parties to encrypt/decrypt the information using the known
output bit. In simulations the synchronization time is well defined—the first step in which
all weight-vectors of the parties are in an anti-parallel state. In contrast, in the analytical
solution the average overlap of the hidden units tends to zero exponentially with the number of
steps. In order to compare analytical results to simulations we need to find a criterion which
determines synchronization. We chose the criterion p < —¢; = —1+0.1/(NL) to define
full synchronization, since ¢; is much greater than the maximal possible overlap just before
synchronization.

The exponential decay of the overlaps with the number of steps and the claim that
synchronization is achieved at a finite number of steps even for N >> 1 have to be clarified.
Our synchronization process is mainly characterized by two regimes: the first ¢, steps which
are characterized by different IRs (in some of the steps) for the two parties. Note that 7, is
fluctuating from sample to sample. The asymptotic regime, the last #, steps, where the IRs of
the parties are always the same, and the weights are converging to an anti-parallel state similar
to three perceptrons, 7, & log(N) [9]. Roughly speaking, the two regimes are characterized by

el > 1/1, and € < 1/1, respectively. Our analytical results as well as simulations indicate

1

that 7, is independent of N. Hence as long as ¢, > 15, the log(/N) dependent is invisible. For
L = 3, for instance, fynen ~ 400,17, ~ 300, and 7, is expected to be equal to #, only for
N ~ 6200.

In figure 1, we present the histogram of the number of steps required to achieve
Lsynchs P (tsynch), in simulations with N = 10* and L = 1 and the initial weights were chosen
such that ,oiA’B = 0. This distribution is in fairly good agreement with the results obtained by
the runs of the iterative equations for { f,,}.

Let us now examine a possible attack of a third player, an attacker o, that tries to imitate
one of the parties (let us say A). We assume that the attacker uses the same algorithm as one
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Table 1. The average synchronization time, fsynch, the average learning time, fiear, their standard
deviation and the ratio fiearn / Zsynch averaged over 2000 different runs of the iterative equations with

the halting criterion ¢; = 1-1073.

Tsynch HNearn r
L=1 61+10 1.1x10°+02x10> 1.8+0.6
L= 188+£26 1.5%x10°+05x%x10° 8.0+£29

L=3 376+51 45x10*+13x10* 120+51
L=4 673+95 69x107+57x%x107 1.04 x 10°+1.02 x 10°

of the partners. The attacker updates its own weight-vectors only when an updating step is
taken by the parties. The natural move of an attacker in such an event is to follow the rule of
the parties

W;’f = W7 + K(W_fixj,-aB)xj,-aBG(aAri”)Q(—GAUB) 3)

indicating that only weight-vectors belonging to the hidden units which are in agreement with
the output of party A are updated. The evolution of the overlap of an attacker depends on
the evolution of six matrices; three matrices describing the overlaps between the parties and
similarly, three matrices describing the overlaps between the attacker and the first party. Note
that the dynamics of the attacker depends on the moves of the parties which depend on their
overlaps. Hence, the time evolution of six matrices gives the full description of the overlaps
between the attacker and the first party and between the parties themselves. The mutual
dynamics of the two parties and the attacker depends on the joint probability distribution of
8 x 8 x 8 IRs, and upon the corresponding updates of the six matrices. The full description
of the discrete time evolution of the matrices will be given elsewhere [9].

The analytical solution of the dynamics of the attacker indicates that a full learning is
achieved in a finite number of steps, #jcam, Where a full learning is defined such that pho
In table 1 fieam and fey,cn are compared for various L.

For L = 1 the average learning time is about twice the synchronization time, and one
may reach the wrong conclusion that the synchronization process always terminates before the
learning process. In figure 1 we present the histogram of fgynen and fieam, and a fairly good fit
between analytical and simulation results is apparent. The two distributions, P (fsynch), P (fieam)
have a finite overlap, indicating that in a finite fraction of the runs the learning process
terminates before the achievement of synchronization (which was indeed observed in the
simulations). Hence the construction with L = 1 is not a good candidate to build a secure
channel.

For L > 3 the ratio r = ficam/fsynch averaged over the runs was found to be r > 1
(see table 1). For L = 3, we did not observe, in simulations over 10° runs, a case where
feam < fsynch- In figure 2 we present the histogram of the probabilities of the ratio, r, as was
found by averaging over different runs of the analytical equations. The minimal value of the
ratio was r ~ 6 where the largest ratio was r ~ 680. We found that the largest fynen < 1000
whereas the typical learning time is 4.5 x 10%.

Synchronization in the case of PMs with continuous weights is achievable only with the
following modifications. (a) Spherical normalization, Z;V:l Wj2,. = N, of the weight-vectors
belonging to each one of the hidden units after every updating step [6]. (b) The change in the
strength of each weight is /N, where 7 is a constant of order 1. The synchronization time is
proportional to N, and therefore the analytical description of the system is given by a coupled
differential equation. Some limited results and a brief description of the method are presented
below, whereas detailed results will be given elsewhere [9].

> (.
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Figure 2. The distribution of 7 = fiearn/Zsynch for L = 3 obtained from the analytical solution of
about 1200 runs. The lowest value obtained for r was ~6. Inset: the average overlaps p4+% (solid
line) and 5*° (dashed line) as a function of & for PMs with continuous weights and n = 3 are
presented. Symbols stand for simulation results with N = 5000 and error bars are smaller than
the symbols.

Updating of weights of the first party is given by
Wit — Wi+ IX0(—0%0B)0 (07 )o®

L WAL IX0(—0A0B)0 (0 AT )0 B

“4)

and similarly the updating rules for the second party and the attacker. The analytical
calculation can be simplified in the continuous case by the probability that there is a
mismatch between the two PMs given that there is a mismatch between two hidden units,
Pl = P(o* # o®|t # 1f) = €)e} + (1 — €5) (1 — €5). One can map the mutual process
onto that of perceptrons, where the updating of the first party is given by

Wl.A+ — (WlA + EX,-IBA,-A) / ‘WlA + EX,-IBA,-A
N N

(&)

and similarly for the second party, where A = 6(— 72 72)0 (4 — p,) +6(z/ t2)0 (1 — P} —
pb)0(3 — pe)s and pa, pp. pe are the auxiliary variables.

The next step consists of the averages over the following two quantities. (a) Averaging
over the joint probability distributions of the local fields of the two parties. (b) Average over
the auxiliary variables, which is unique to the case of mutual learning. The normalized overlap,
0, between weight-vectors belonging to each pair of hidden units is found to obey the equation,
dp/da = n[C*+ (1 = C’1((1 = p)/~2w = nC/2)(1 + p) = 2n(1 — p)C(1 — C)/v/27 —
n*pC(1 — C)?, where C = cos™! p/m. For n < n. ~ 2.68 the points p = +1 are repulsive

fixed points of the above equation, where for n > n., p = —1 is an attractive fixed point.
The equation of motion of the overlap of an attacker with the first party after
synchronization, ie. p4% = —1,p4° = —pB° is given by dp?°/da = n>’(1 —

cos™! pA°/m — pA?)/2. The fixed point of this equation is p4° = —pf° ~ 0.79 and
is independent of 7, indicating that perfect learning is not achievable. Analytical results
derived from the last two equations with n = 3 are presented in the inset of figure 2 and are in
good agreement with simulation with N = 5000 and 20 runs.
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Finally, we note that the robustness of the presented cryptosystem to other possible

attacks and the existence of a practical secure channel based on a public protocol for the
synchronization of the parties are both in question.
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